Experimental and 'in silico' analysis of the effect of pH on HIV-1 protease inhibitor affinity: implications for the charge state of the protein ionogenic groups.

22 September 2012

Domínguez JL, Gossas T, Carmen Villaverde M, Helena Danielson U, Sussman F. (2012) Biorg. Med. Chem., 20 (15):4838-47.

The pH dependence of the HIV-1 protease inhibitor affinity was studied by determining the interaction kinetics of a series of inhibitors at three pH values by surface plasmon resonance (SPR) biosensor analysis. The results were rationalized by molecular mechanics based protocols that have as a starting point the structures of the HIV-1 protease inhibitor complexes differing in the protonation states as predicted by our calculations. The SPR experiments indicate a variety of binding affinity pH dependencies which are rather well reproduced by our simulations. Moreover, our calculations are able to pinpoint the possible changes in the charged state of the protein binding site and of the inhibitor that underlie the observed effects of the pH on binding affinity. The combination of SPR and molecular mechanics calculations has afforded novel insights into the pH dependence of inhibitor interactions with their target. This work raises the possibility of designing inhibitors with different pH binding affinity profiles to the ones described here.

Link to PubMed

More publications

 

Stay Updated

Sign up for the Beactica newsletter to receive our latest news and updates

This website uses cookies to improve your user experience. By continuing to browse this site, you agree to our use of cookies. More information. Ok!