Biosensor-based kinetic characterization of the interaction between HIV-1 reverse transcriptase and non-nucleoside inhibitors

01 January 2006

Geitmann, M., Unge, T. and Danielson, U.H. (2006) J. Med. Chem. 49(8): 2375 – 2387.

Details of the interaction between HIV-1 reverse transcriptase and non-nucleoside inhibitors (NNRTIs) have been elucidated using a biosensor-based approach. This initial study was performed with HIV-1 reverse transcriptase mutant K103N, the phenethylthioazolylthiourea compound (PETT) MIV-150, and the three NNRTIs licensed for clinical use:  nevirapine, delavirdine, and efavirenz. Mathematical evaluation of the experimental data with several interaction models revealed that the four inhibitors interacted with HIV-1 RT with varying degrees of complexity. The simplest adequate model accounted for two different conformations of the free enzyme, of which only one can bind the inhibitor, consistent with a previously hypothesized population-shift model including a preformation of the NNRTI binding site. In addition, a heterogeneous binding was observed for delavirdine, efavirenz, and MIV-150, indicating that two noncompetitive and kinetically distinct enzyme−inhibitor complexes could be formed. Furthermore, for these compounds, there were indications for ligand-induced conformational changes.

Link to PubMed

More publications

 

Stay Updated

Sign up for the Beactica newsletter to recieve our latest news and updates

This website uses cookies to improve your user experience. By continuing to browse this site, you agree to our use of cookies. More information. Ok!